|

o 6P 3 s-EC
AD-A260 567 r3
IR e

PURDUE UNIVERSITY
SCHOOL OF AERONAUTICS AND ASTRONAUTICS

A Hierarchical Target Extraction,
Recognition, and Tracking (HiTert) System

by
Jun Lu
Dominick Andrisani, Il
and M. Fernando Tenorio

March 31, 1992

Final Report to the U. S. Army Research Office
Contract No. DAAL03-89-K-0086

N)
o
T Uaaf
Womaneas] /o> ity
ibugg, ‘ IEKENRINERETIENE
1282 Grissom Hall

West Lafayette, Indiana 47907-1282

93 2 1§ 048§

A Hierarchical Target Extraction,
Recognition, and Tracking (HiTert) System

by
Jun Lu
Dominick Andrisani, |
and M. Fernando Tenorio

March 31, 1992

Final Report to the U. S. Army Research Office
Contract No. DAAL03-89-K-0086

School of Aeronautics and Astronautics,
and School of Electrical Engineering|
Purdue University
West Lafayette, IN

47907

Accesion For

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

REPORT DOCUMENTATION PAGE rorm &pproved

OMB No 0704-0788

Pubiic reporting burden 107 thig oleCioN 21 ATCIMATION 3 eSTMATEed IC 4+ 273GE ' NOur DRT "EPOrse NAUAING the time *Or "ev ewing (ASIructiony searching euTing data sOurce
ql!heﬂﬂq AN MPNTING LRE ABTI nESDEd, Ind (OMPIeNg and review ng the . Dllecnion Of IntOrmation Seng comments rp?‘ramg hiy Durden estimale Or any STRer 2308(1 3 *™iy
collection of 1nformation, INCluding suggestions 10f reducing this burden to Washington ~eadquarten Services. Directorate for \ntormation Operations and Repcrts 12°5 [etterson
Oavis Highway. Suite 1204, Arlington. VA 222024302, #nd 10 the Ot ice ot Management and Budget Paperworx Reduct:on Project (0704-0188) Washington OC 20503

1. AGENCY USE ONLY (Leave biank) | 2. REPORT DATE 3. RERORT TYPE AND DATES COVERED

3/31/92 mal) @fm P9~ 2/ Mas 92
4. TITLE AND SUBTITLE 57 FUNDING NUMBERS

A Hierarchical Target Extraction, Recognition and
Tracking (HiTert) System

DAACOR -§%~Is-00Y0

6. AUTHOR(S)
Jun Lu, Dominick Andrisani II, and M. Fernando Tenorio

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
School of Aeronautics and Astronautics REPORT NUMBER

and School of Electrical Engineering
Purdue University

West Lafayette, IN 47907

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/A@ONITORING
AGENCY REPORT NUMBER
U. S. Army Research Office

P. 0. Box 12211 S -
Research Triangle Park, NC 27709-221} ABO 268/3 E(‘

11. SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

123. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200words) This research contributed to the development of a
hierarchical target extraction, identification, and tracking system
based on imaging sensors. The work suggests that passive tracking of
ground targets is a desirable possibility. Our work involved 1) computer
rendering of a color image database containing 1000 images of a
maneuvering tank; 2) the use of image derived data to help track a
violently maneuvering tank; 3) the use of the Cantata Visual programming
Language to design the multiple interconnected algorithms in an
intuitive and extensible manner; 4) the delivery of this software to the
U. S. Army Armament Research and Development Center (ARDEC) at Picatinny
Arsenal, New Jersey; and 5) presenting of a one day short course to
engineers at ARDEC concerning the design and use of the software. This
final report describes that software. Our research has suggested the
need for the following future work: 1) improved realism in the computer
generated image database; 2) development of additional higher level
image processing and tracking modules using Cantata; and 4)
implementation of a way to communicate between competing algorithms.

14. SUBJECT TERMS 15. NUMBER OF PAGES
target tracking, image processing, optical tracking 124

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE Of ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 {Qev 2.89)

PrescriDea by ANSI Sta 239.'8
298102

Contents

1 Introduction 1
1.1 Structure of the HiTert System 1
1.2 Scenario Under Consideration 3
1.3 Some ImplementationIssues 5

1.3.1 A Generic Subsystem 5
1.3.2 Non-real Time Simulation 7
1.4 Development Environment 9
1.4.1 Hardware Architecture 9
1.4.2 Interprocess Communication(IPC). 9
1.4.3 Cantata Visual Programming Language 10

2 Installation Guide 11
2.1 Platform Requirements 11
2.2 UnpacktheSource 12
2.3 Installation Environment Variables 12
2.4 Compilation and Installation . . .~ 13

3 Getting Started 14
31 X Window System 14
32 KhorosSystem 14
3.3 Environment Variables for the HiTert System 1o
3.4 Command Line Interface 17

CONTENTS i
3.5 Cantata Visual Language Interface 19
4 User’s Guide 21
4.1 Overview of the Software Modules 21
42 DataControlModule 24
4.2.1 Introduction 24
4.2.2 Command Line Options 25
4.2.3 1/0 File Specification 28

43 World-view Camera 35
43.1 Introduction 35
43.2 Command Line Options 36
43.3 I/0 FileSpecification 39

44 TrackingCamera 41
4.4.1 Introduction, 41
442 Command Line Options 42
4.4.3 1/0 File Specification 43

45 ImageProcessor. 44
451 Introduction 44

4.5.2 Command Line Options 44
4.5.3 1/0 File Specification 49

46 Tracker. 52
46.1 Introduction 52
4.6.2 Command Line Options 52
4.6.3 1/0 File Specification 53

4.7 Predictor. 55
4.7.1 Introduction 55
472 Command Line Options 56
4.7.3 1/0O File Specification 57

48 Error Analysis. o o oL 58
4.8.1 Introduction 58

CONTENTS
48.2 Command LineOptions
4.8.3 1/0 File Specification.
4.9 Instrumentation Module
49.1 Introduction
49.2 Command LineOptions
49.3 1I/O File Specification
5 World-view Image Database
51 Introduction,
5.2 TrajectoryData
53 Scenario e e
54 Image Generation
5.5 I/O File Specification
5.5.1 Command Line Options
552 InputDataFile
5.5.3 Output Description File
554 ImageFiles
6 Conclusions
6.1 Summary of Achievements
6.2 FutureResearch.
A a-B-v Tracker Design
A.l Introduction oL
A.2 Target State Estimator Equation
A.2.1 StateEquation
A.2.2 Measurement Equation
A.23 Discretization
A.3 Target State Estimator Gains
A4 Predictor Equation 000,

i

59
63
65
65
67
69

71
71
71
74
75
76
76
80
81
83

84
84
85

CONTENTS iv
A.5 Numerical Results. 92
A6 Conclusions o o i e, 95

B Dartboard Analysis 96
B.1 Definitions e e e 96
B.2 TheHit Point e, 98
B.3 Coordinate Transformation 99

C Geometrical Transformation 101
C.1 Introduction e 101
C.2 Viewing Transformation 102

C.2.1 World to Screen Transformations 102

C.2.2 Scaling Compensation 104

C.2.3 Perspective Transformation 104

C.2.4 Screen Transformation 105

C.2.5 Concatenation of Transformations 107

C.3 Screen to World Transformations 108

D Manual Pages 110
Bibliography 122

List of Figures

1.1
1.2
1.3
1.4
1.5

4.1
4.2
4.3
44

5.1
5.2

Al
A2
A3

B.1

Cl1
C.2
C3

Structure of HiTert system 2
Tracking scenario, 4
Trajectorydata 6
A genericsubsystem o o0 7
World and cameraviews 8
Software modules and dataflows 22
Definitions of the dartboard 59
Definition of the burst interval 60
The window arrangement. 66
Scenario under consideration 73
Trajectorydata, 74
a-fB-v tracker RMS predictionerror 93
a-3 tracker RMS predictionerror 94
a-f tracker RMS estimation error(t, = 0 second) 95
Dartboard schematic 97
World to eye coordinate transformation 102
Perspective transformation 106
Screen transformation 107

Chapter 1

Introduction

In this chapter, the underlying concepts of the Hierarchical Target Extrac-
tion, Recognition and Tracking(HiTert) System will be addressed. These
concepts are essential for understanding the rest of the material. Some im-
plementation issues will also be briefly discussed.

1.1 Structure of the HiTert System

The HiTert system is aimed to study a hierarchical target extraction, recogni-
tion and tracking system based on passive sensors, which could be integrated
with other battlefield resources[l1]. The HiTert system consists of the mu-
tually beneficial subsystems running different algorithms and executing in
parallel at several hierarchical levels. Together these subsystems cooperate
in seeking the solution for the complex problem beyond the capability of any
one of the subsystems. The HiTert system is composed of four hierarchical
levels as shown in Figure 1.1:

o Preprocessing Level: Imagery acquiring, noise filtering and compensa-

tion of the effect of the imaging system[3].

CHAPTER 1. INTRODUCTION 2
s
2 High Level Reasoning user commands

[4—P other systems

p{ Tiroec] Orientation Lgd progictor II >
Recognition Tracker

&{ Target Sp{ Csarroid Preditctor Ij&-P
Extraction Tracker ﬁ

P
Image Camera
Sla o <
Preprocessing Servo _.5
‘— Laser Ranqer
{ Finder "
s Radar

Figure 1.1: Structure of HiTert system

T Ty

CHAPTER 1. INTRODUCTION 3

o Low Level: Target extraction and tracking. The tracker at this level
mainly uses primitive information such as the target centroid position,
while the image processor at this level classifies the pixels of images

and separates the target from the background.

e Middle Level: Target recognition and tracking. The image processor at
this level is responsible for yielding target orientation information and
object identification. These refined results are utilized by the tracker
at this level. The processing at this level has a longer time period than

that at the low level processing.

e High Level: Command, Control and Communication. This high-level
reasoning module is responsible for the coordination of low-level subsys-
tems, information fusion, user interaction, and interaction with other
battle field resources. The blackboard architecture allows the informa-
tion sharing, subsystem coordination and integration with other battle

field resources.

1.2 Scenario Under Consideration

Figure 1.2 shows the simple battle field scene being considered. It consists of
a flat terrain, a moving tracked vehicle, a house, a generic tree. Such a simple
scene still possesses the characteristics of a complicated battle field environ-
ment. For instance, certain obstacle avoidance strategies will be adopted
by the driver in the decision-making of the driving logic; overlapping of the
target and ground costacles may pose ambiguity problems for the image pro-
cessor to resolve. However, such a simple scenario ameliorates the complexity
of scene rendering and also makes it more amenable to study and analysis.
It should be noted that to be consistent with the Doré 3D graphics
system[11], which is used to generate the world view images, the camera

coordinate system is such that the “camera” looks along the negative Z.

CHAPTER 1. INTRODUCTION 4

Z; (Ovwny

Figure 1.2: Tracking scenario

CHAPTER 1. INTRODUCTION 5

direction and z., y. are mapped to the horizontal dirction(left to right) and
vertical direction(down to up) of the screen.

One set of trajectory data is shown in Figure 1.3. It is believed that
the target may do any maneuvering as the driver deems necessary to avoid
the threat in a real environment. A maneuvering is realizable as long as the

certain dynamic constraints are satisfied:

e The acceleration and deceleration can not exceed the thrust capability
as determined mainly by the characteristics of the propulsion system

and the terrain sustaining capability.

o Under the no-skidding condition, the target lateral acceleration should
not exceed the terrain sustaining capability determined by the lateral
frictional coefficient:

a, = wv < g

where a, is the centripetal acceleration, w the angular rate, v the for-
ward speed, y, the lateral frictional coefficient, g the gravitational con-

stant.

1.3 Some Implementation Issues

1.3.1 A Generic Subsystem

The HiTert system spans several research fields such as target dynamics
modeling and tracking, image processing, artificial intelligence and database.
Many subproblems are being actively studied. The full implementation of
such a hierarchical system is difficult. And further in-depth study of HiTert
is needed. As a result, we break down the complex problem into simple

ones, concentrating on building a testbed for the subsystem operating at

CHAPTER 1. INTRODUCTION 6

8
z
:

=)

angulas velocity(deg/sec)
o

-50
0 . -1 -
0 50 100 wO 50 100
time(sec) time(sec)
o Heading Angle Profile 8000, Traieciory in the Inertial Fryme
g lw bt se5n oncova oo nnanvis So s R SR SRR E TS A S e hramneiesis wun abans - m 8
3.‘. z ;
- | W SR WORU. S—— - 3 4000} : ‘ 1
. b
§ 'lw L - m .. -
0 50 100 <4000 -2000 0 2000 4000
time(sec) Y(feet)

Figure 1.3: Trajectory data

different levels. From the point of view of information flow, a subsystem
at a certain level has the information loop as shown in Figure 1.4. Such a
testbed is simple enough to implement, yet still flexible enough for further
development. With such a testbed, different modules or algorithms can be
plugged in with minimum efforts. This allows the easy comparisons and
selections of different algorithms, and it also makes it possible to quickly
prototype a subsystem.

CHAPTER 1. INTRODUCTION 7

(= H = H=

Figure 1.4: A generic subsystem

1.3.2 Non-real Time Simulation

Optical imaging system is one of the important components of the HiTert
system. Computer graphics principles are utilized to generate the images for
a simulated battle field scene. Real-time simulation of a battle field scene
is tempting, but requires special hardware, which is prohibitively expensive.
Also, segmenting images is very CPU-intensive and special hardware is also
required if the real-time response is desired. Because of the unavailability of
the special hardware due to its prohibitively high cost, it is decided to perform
CPU-intensive work off-line, i.e. a sequence of images are pregenerated and
presegmented and the results are stored on disk. The raw images as well
as segmented images are made available, on demand, to the HiTert system
during its operation.

The basic idea behind this approach is as follows. A fized world-view
“camera” is introduced for the purpose of generating a temporal sequence
of world images. This “camera” is assumed to have sufficiently large field
of view such that the target always moves within the field of view for the
time period of interest. The tracking camera, which is the imagery acquiring
system in HiTert, is able to pane commanded by the tracking system. If
both the world-view camera and the tracking camera are located at the same
position, if the world-view camera has a sufficiently large field of view, and

if the tracking camera has sufficiently small panning angles, then the image

CHAPTER 1. INTRODUCTION 8

R R R e T 5

Figure 1.5: World and camera views

as seen by the tracking camera is just a subimage of the world-view image.
This is illustrated in Figure 1.5.)

The presegmentation is done on a subimage that is centered around the
target. Portion of this subimage may overlap with the image of the tracking
camera. It should be noted that if HiTert has a poor performance in oper-
ation, the tracking camera may be commanded to look at a wrong region.
In this case, the presegmented image and the tracking camera image may
have no overlapping at all. If HiTert’s performance is very poor, the track-
ing camera’s boresight may completely fall outside of the viewing angles of
the world-view camera. Conversely, the symbiotic resonance of the track-
ing system and image processing system can yield a tight lock on target(2].
Therefore, with this non-real time simulation approach, in which the CPU-
intensive jobs are preprocessed , HiTert system can be implemented on a
general-purpose digital computer; and reasonably fast on-line responses can
be achieved; yet the dynamic performance of the HiTert system can still be
fully evaluated.

The presegmentation allows the implementation of sophisticated time-

consuming image processing algorithms. This non-real time simulation ap-

CHAPTER 1. INTRODUCTION 9

proach also makes it possible to study tracking and image processing algo-
rithms separately.

It should be pointed out that the world-view “camera” is fictitious. Its
main purpose is to generate the world-view image database.

1.4 Development Environment

1.4.1 Hardware Architecture

The School of Aeronautics and Astronautics has clusters of Sun worksta-
tions ranging from Sun 3/50 to Sparc 1, running vendor-enhanced UNIX!
operating system(SunOS 4.x). These workstations are part of the nodes on
the Local Area Network, which is connected to the Engineering Computing
Network(ECN). ECN consists of varieties of platforms, ranging from work-
stations to supermini computers, connected via ethernet.

The primary development work is done on a Sun workstation, with the
de facto industry standard X Window System? Version 11, Release 4. The
network environment as well as the network-transparency of X windowing
system allows us to explore the distributed processing in the HiTert system.
Also whenever possible, more dedicated computers are used. For example,
the image database is generated on a Stardent 3000 machine, a supermini

graphics computer.

1.4.2 Interprocess Communication(IPC)

On current UNIX systems, processes can communicate with one another via a
variety of methods, including shared file pointers, signals, files, pipes, FIFO’s,
semaphores, messages, shared memory and Berkeley sockets[6, 7]. Shared

memory provides the fastest IPC mechanism. However, the communicating

1UNIX is a registered trademark of AT&T Bell Laboratories.
2The X Window System is a trademark of MIT.

L__.

CHAPTER 1. INTRODUCTION 10

processes must physically reside on the same machine. Also, shared mem-
ory makes the communication interface complicated, while software modules
are constantly evolving. BSD socket-based IPC mechanism has the same
drawback in communication interface design as shared memory, although it
allows communication among the processes running on different machines
on the Internet. To simplify the communication interface, files are chosen
as the IPC mechanism for the HiTert system at this stage. Files provides
IPC for the processes running on the machines with the same Network File
System. Also, there are standard C libraries on all systems supporting the
C language(4, 5], and most people are familiar with I/O on files. Another
important factor in choosing files as the IPC mechanism is the availability
of the X11-based Cantata visual programming language coming with the
Khoros system[8]. Cantata provides a graphical user interface for the UNIX
processes communicating via files, thus simplifying our work in the graphical
user interface design.

1.4.3 Cantata Visual Programming Language

One of the major components of the Khoros system is its Cantata visual
programming language. Cantata provides a graphical user interface for the
conventional command line options interface of UNIX programs. Graphi-
cally expressed and visually oriented, Cantata consists of following graphical
elements: a workspace, forms, glyphs, and connections. To build a Can-
tata application, the user selects the desired programs(or processing nodes),
places the corresponding glyphs on the workspace, and then interconnects
the glyphs from upstream to downstream to indicate the data flow of pro-
cessing. The built-in control constructs, as well as its expression parser and
dynamic execution scheduler make Cantata behaves like a visual shell. Be-
cause of these features, Cantata is selected as a visual presentation tool for

our UNIX command line interface programs.

Chapter 2

Installation Guide

In this chapter, some highlights of the installation procedures will be pre-
sented to reduce the installation efforts on the user’s part. Currently, all the
modules are implemented in the C Language, though some Fortran and Lisp
modules may be included in the future. Efficiency and portability have been
taken into account. All the programs have been tested on Sun3 and Sparc

workstations.

2.1 Platform Requirements

A Sun workstation of 3/60 or later model is recommended but not mandatory.
Other hardware supporting C and UNIX environment is just fine, although
some additional porting efforts may be needed. However, in order for all the
modules to run, the X window system(version 11, release 4) and the Khoros
system must already be installed. We shall assume this to be true in the
following.

The HiTert system takes about 10 mega bytes of disk space and need 8
MB main memory (RAM) to achieve a reasonable real-time response because
of the large(900 x 900 pixels) images involved.

11

CHAPTER 2. INSTALLATION GUIDE 12

2.2 Unpack the Source

To unpack the tar file hitert.tar.Z, go to the directory in which the HiTert
source tree is to be installed. Note that this directory does not have to be in

the Khoros source tree. Then type
example¥ zcat hitert.tar.Z | tar xvf -

This should result in HiTert source directory hitert.

2.3 Installation Environment Variables

The environment variable HITERT_HOME must be set to the full path of the
HiTert source directory. For example, if you are using csh-shell, type

csh-example¥, setenv HITERT_HOME /home/gus2/luj/hitert
If you’re using ksh, bash, or sh shell, type

sh-example) HITERT_HOME=/home/gus2/luj/hitert
sh-example’ export HITERT_HOME

Note in the the above examples, /home/gus2/1uj/hitert should be modified
to reflect the change of the full path name of the HiTert source directory.
From now on we shall refer to this directory, following a UNIX shell’s syntax,
by symbol $HITERT_HOME.

To compile all the programs, you should also have the environment vari-
able KHOROS_HOME set properly to the directory where the Khoros system is
installed. This is necessary for linking with the Khoros libraries in compiling
some programs. Section 3.2 has some information on how to set KHOROS_HOME.
For further information on how to set this environment variable, please con-

sult Khoros reference manual.

CHAPTER 2. INSTALLATION GUIDE 13

2.4 Compilation and Installation

After you have unpacked the HiTert source and set the environment variables,
issue the following command while in $HITERT_HOME directory:

example) ./InstallMe

InstallMeis a shell script intended to automate the installation process.
In the case such a global automated compiling procedure fails, you may want
to compile the programs individually. To compile a program, you may need
to modify the corresponding Imakefile!, and then update Makefile by issuing
commands:

exampleX rm -f Makefile
exampleX makemake # Khoros program. Not xmkmf
example) make all

After the successful compilation of the programs, you need to copy or
move the resulting executable programs to a directory. This directory should
be included in your shell’s search path by modifying the environment vari-
able PATH as necessary. You may also want to install manual pages to the
appropriate directory and modify the man(1)’s environment variable MANPATH
so that HiTert’s UNIX manual page directory is in man(1)’s search path.

1The Imakefile is Khoros-flavored and has the difference with the Imakefile of X11R4
from MIT.

Chapter 3

Getting Started

3.1 The X Window System

It is assumed that you have some basic working experience in a windowing
environment, and that you know how to login a workstation with a bitmap
display and start the X window system. This procedure varies from the site
to site. Usually, there is a site-customized shell script program available to
help the user to invoke xinit (1) and a set of applications such as xterm(1),
xclock(1) and etc.

3.2 The Khoros System

It is also assumed that now both Khoros and HiTert system have been suc-
cessfully installed and you have some exposure to cantata(1), a visual lan-
guage environment in Khoros system. If you know how to start Khoros
programs from your home directory, you may skip this section and go to
Section 3.3.

To access Khoros programs, you need to set the environment variable
KHOROS_HOME to the full path of the directory in which Khoros is installed(this
directory will be referred to by the symbol $KHOROS_HOME). In $KHOROS _HOME,

14

CHAPTER 3. GETTING STARTED 15

there should be a file named .khoros_env for csh users. You may need to
add the following lines in your .login or .cshre file:

setenv KHOROS_HOME /home/gus3/khaos
source $KHOROS_HOME/ .khoros_env
set path = ($KHOROS_HOME/bin $path)

If you are using other shells such as ksh, bash or sh, you need to
modify $KHOROS_HOME/.khoros_env. In your home directory, create a file

.khoros_env.sh which contains the following lines

KHOROS_HOME=/home/gus3/khaos # edit this as necessary

KHOROS _MAIL=$USER

KHOROS _LOG=$HOME/khoros_cmd.log

KHOROS _VERBOSE=no

KHOROS_CACHE_SIZE=4194304

KHOROS _CACHE=no

TMPDIR=${TMPDIR-/tmp}

export KHOROS_HOME KHOROS_MAIL KHOROS_LOG KHOROS_VERBOSE \
KHOROS_CACHE_SIZE KHOROS_CACHE TMPDIR

Then in your .profile, add the following statements:

. $HOME/ .khoros_env.sh
PATH=$KHOROS_HOME/bin:$PATH; export PATH

3.3 Environment Variables for the HiTert
System

First, you need to set the shell environment variable HITERT_HOME to the
directory in which the hitert source tree resides. For example, if you are
using csh, just type the following to the shell prompt:

CHAPTER 3. GETTING STARTED 16

example¥ setenv HITERT_HOME /home/gus2/luj/aro/hitert
If you are a ksh, bash, sh user, enter the following at the shell prompt:

example) HITERT_HOME=/home/gus2/luj/aro/hitert
exampleX export HITERT_HOME

In the above examples, /home/gus2/1uj/aro/hitert need to be modi-
fied reflect the changes to the actual environment. If you want to avoid doing
this every time after you login, you may add the corresponding statements
to your .login or .cshrc file if you are a csh user, or to your .protile file
if you are a ksh, bash or sh user.

You also need to check to see if the shell environment variable PATH
includes the directory in which the HiTert programs are installed. If not, you
need to modify PATH such that the shell’s search path includes this directory.
For example, if the HiTert programs are installed in the directory $HOME/bin,
you may modify your shell PATH variable in the following way:

for csh user
setenv PATH $HOME/bin:$PATH

or

for ksh, bash, sh user
PATH=$HOME/bin:$PATH; export PATH

You may also want to set your environment variable MANPATH so that
it includes the directory in which the manual pages for the HiTert system
are installed. For example, if the manual pages for the HiTert system are
installed in the directory $HOME/man/man1, you may set MANPATH variable
this way:

for csh user
setenv MANPATH /usr/man:$HOME/man

CHAPTER 3. GETTING STARTED 17

or

for ksh, bash, sh user
MANPATH=/usr/man:$HOME/man; export MANPATH

To see if you have correctly set the environment variables for the HiTert
system, just type

exampleX hitert -help

If you are akle to see the help message from hitert, congratulations. If your
shell is unable to find the executable program hitert, you need to check if
PATH indeed includes the directory in which the HiTert executable programs
reside. If hitert reports an error, you need to make changes accordingly.

Similarly, if MANPATH has been set correctly, you should be able to see
the on-line manual pages following this example:

exampleX man hitert

3.4 Command Line Interface

The HiTert programs can be invoked as an individual program by typing
the command or program name with command line options. For exam-
ple, if the file prediction.dat contains prediction data from the a-8-v
tracker/predictor, and if the file exact .dat contains the reference exact data

for the target positions, you can invoke errAnaly to the perform error anal-

ysis by typing:

exampleX errAnaly -pred prediction.dat -exact exact.dat \

-showDart 0 -outSpec spec ~outErr error.dat

CHAPTER 3. GETTING STARTED

18

errAnaly will compute the errors in each inertial z, y, z component,

and store the error data in the file error.dat. File spec will contain the

statistics about the errors.

This is the conventional way to invoke a UNIX program, familiar to

most UNIX users. In this approach, a shell is acting as the interface be-

tween the user and the kernel, even though you may not be aware of this.

Except for xhitert, all cther HiTert programs can be executed by using the

command line interface from any terminal without getting into X windowing

environment.

If you want to get some simple help from a program, just type

example), errAnaly -help
This yields

Usage: errAnaly
-pred <predfile>
-exact <exactfile>
[-tbf <tbf>]
[-tburst <tburs>]
[-showDart <1 or 0>]
-outSpec <filename>
[-outErr <filename>]
[-help]

data file from the predictor

exact data file for comparison.

track-before-fire time.

burst interval.

computes the dartboard errors.
output spec filename.
prediction err data filename.

print out this help message.

If your manual pages are properly installed and the environment variable

MANPATH is set properly, you may get a more detailed description by using

UNIX man(1) command. For example,

example¥ man errAnaly

_

CHAPTER 3. GETTING STARTED 19

UNIX stdin(standard input) can be used for any one input file by spec-
ifying “-” for the file name. Similarly, stdout(standard output) can be used
for any one output file by specifying “-” for the file name. As a result, the
output of one program can be piped to the input of another program. For

example,

example), predict -i tracker.dat -o - -tp 2 | errAnaly -pred

-exact exact.dat -showDart 0 -outSpec spec -outErr error.dat

invokes the predict, which performs prediction based on the tracker out-
put(state estimates) tracker.dat. The prediction results are piped, as the
input, to the program errAnaly, which does the error analysis.
Experienced users may notice that there are some differences in the han-
dling of command line options between the HiTert programs and Khoros pro-
grams. In the HiTert programs, the Khoros program ghostwriter has not
been used to generate the code for handling command line options; instead
a much more efficient scheme is utilized to parse the command line options.
Standard Khoros flags “[-U] [-P] [-A [file]] [-a [file]]” are not supported by the

HiTert programs, since we ourselves found little use of them.

3.5 Cantata Visual Language Interface

To access cantata visual language interface for the HiTert system, you need

first start up the X window system from your workstation. Then from an.

xterm(1) (an X-based terminal emulator) type
example} hitert

This should bring up the cantata visual language interface with the cus-
tomized forms for the HiTert system. All the HiTert programs can be ac-
cessed from the pull-down menu “HiTERT” on the master form. On-line

CHAPTER 3. GETTING STARTED 20

documentation for the corresponding programs can be invoked by pressing
the “Help” button on the pane.

Within the the cantata visual language environment, accessing the HiTert
programs is the same as accessing other Khoros programs. You should have
little problem in using HiTert programs if you are familiar with cantata.
Please consult Khoros tutorial or reference manual for the assistance in us-
ing cantata.

Novice users may find it helpful to use hitert2. This program brings up
the cantata visual language interface as well as a preassembled and stored
workspace as shown in Figure 4.1. This should serve as a good example
«3 how to assemble individual HiTert programs together to perform a team
work. It should also serve as an extensible foundation upon which a user can

configure HiTert’s behavior by modifying parameters.

l
|
|

Chapter 4
User’s Guide

The modules in HiTert System will be explained in the following sectious.
Chapter 5 is dedicated to the discussion on the generation of the image

database. Interested reader may read that chapter before this one.

4.1 Overview of the Software Modules

Figure 4.1 shows the primary modules comprising a generic subsystem in
HiTert: dataControl, w.camera, t_camera, ipc, tracker, predictor, errAnaly
and zhitert. dataControl module controls starting and terminating time, and
etc. for the HiTert system. w_camera is the world-view camera, responsible
for retrieving the world-view images. t_camera simulates the servomecha-
nism for the tracking camera, receiving command signals from the tracker
and pointing the tracking camera to the appropriate direction. ipc is the
centroid image processor, responsible for retrieving presegmented images.
tracker does the state estimation. predictor does the prediction based on the
state estimation results from the tracker. err4Analy performs the error anal-
ysis for the overall tracking system. zhitert is the instrumentation module,
responsible for the displaying the world-view image, tracking camera image,

segmented image, prediction results, error analysis results, and etc.

21

22

CHAPTER 4. USER’S GUIDE

SMO[j ®)ep pUe S3[NpoW a1em)jog '} 2Indi

=y

T

[EITITITITIT

S19 ® UGN SISATRON 301 o vE T
——]_”aL ml_rl_ _,||__I|u

CHAPTER 4. USER’S GUIDE 23

There are two functional modes for the HiTert system: the datch mode
and loop mode. In the batch mode, each module operates on all the data for
the whole time history of the interest and outputs ail relevant data, and then
it stops execution!. Whereas in the loop mode, each module operates on the
data one time step at a time and will resume the execution when next data
frame is available.

Right now the HiTert system only functions in the batch mode. This
is done primarily because files have been chosen as the IPC mechanism to
fit into the cantata visual environment. Using intermediate files as the IPC
mechanism is most suitable for the processes communicating and executing
in serial or in batch mode. It is possible to implement the loop mode on
top of cantata.However, additional mechanisms such as file locking tech-
niques must be introduced to synchronize and safeguard the communication
of processes executing in loop. Also in the loop mode, each time interme-
diate temporary communication files need to be recreated and each module
need to be restarted by cantata through fork(2). This would incur much
overhead?. Another hindrance for implementing the loop mode is that more
powerful computer hardware® is needed for displaying images in succession.

It should be pointed out that in order to avoid creating or passing multi-
ple intermediate data files, spec files are used frequently in the HiTert system.
The spec files are introduced as the information carriers. Such a spec file
differs from the ordinary data file in that the main purpose of the spec file is
to bundle all the necessar:- pointers to other data files together in a single file,

while all other data files retain their own formats and integrity. For example,

'In batch mode, w_camera only retrieves one frame from the image database, and
zhitert only display one frame of image to save the time and computer resources. This
is important particularly for the monochrome display for which xhitert has to do CPU-
intensive dithering to the the color image.

?More appropriate IPC mechanism for the loop mode is to use BSD sockets, which
however is not supported by cantata visual language environment.

3For example, a Sparc-station with 16 MB RAM and 8-bit color display is required.

CHAPTER 4. USER’S GUIDE 24

v_camera creates a world view image spec file. This file contains the sequence
number of the original input image and the path of the world-view image. By
accessing this spec file, other processes can not only access the image data
by opening the file with the specified path but also know the corresponding
time by appropriately interpreting the sequence number in the spec file.
When multiple date files need to be accessed by the communicating
processes, using the spec file is particularly convenient, since the spec file
encapsulates all the information together as a single file. Introducing spec
files not only greatly simplifies and cleans up the communication interface
design, but also have the potential to greatly reduce the communication
overhead, since now multiple processes can access the same data files without

having to actually pass large data files around.

4.2 Data Control Module

4.2.1 Introduction

In the batch mode, each HiTert program operates on all the data contained
in the input file(s). Very often, however, one wants the HiTert system to run
over a contiguous portion of the data in the file. In order to avoid the unnec-
essary complexity of other HiTert programs, dataControl is introduced as a
stand-alone data control module to isolate the problem. dataControl is re-
sponsible for selecting a portion of time history over which the HiTert system
operates. It takes the description file for the world-view and segmented im-
age database as input, and outputs the selected segment description files and
the corresponding exact trajectory data file. It also outputs a spec file which
contains the sequence numbers and the data records from the description
files at the starting and terminating time. This way, each HiTert program
still operates on all the data contained in the input file(s), yet the HiTert

system is able to operate only over the specified time period as controlled by

CHAPTER 4. USER’S GUIDE 25
dataControl.

4.2.2 Command Line Options
Synopsis

dataControl -imgInfo imginfoFile -segInto seglnfoFile -t0 start-time -te
end-time -oimgInfo out-imgInfoFile -oseglnfo out-segInfoFile -traj out-
ezact-traj -spec out-spec [-help]

Options

-imgInfo imglnfoFile Required argument. imglnfoFile is the description
file for the world-view image database of the whole time history. This
file consists of the data records, with each data record containing items
(see Section 5.5.3):

e time at which the image is to be generated. This is identified by
a “ keyword=value” pair, with the keyword being time.

e the image identifier which maps to the corresponding image file.
This is identified by a “ keyword=value™ pair, with the keyword
being image.

e the image width in number of pixels. This is identified by a “
keyword=value” pair, with the keyword being width.

o the image height in number of pixels. This is identified by a “
keyword=value” pair, with the keyword being height.
e the tank’s state at that instant which includes
tIIyIZ[.f]gj[i[RSTRST

e the camera’s state which includes

Tel Yol <el T y-cl Ze1 Rc Sc Tc Rc Sc Tc

CHAPTER 4. USER’S GUIDE 26

fov fov hither yon yon

where z.1, Y1, Zel, Tel, Yel, 2c1 denote the position and velocity
components of the camera at the instant in global inertial co-
ordinate system. R., S., T, I:Zc, Sc. T. refer to the yaw, pitch
, roll angles and their rates. fov and fouv refer to the field of
view(in degrees) and its time rate of change(in degrees per sec-
ond), respectively; hither, hither denote the position of the front
clipping plane and its rate in the camera coordinate system; yon,
yon position of the back clipping plane and its rate in the camera
coordinate system. The camera coordinate system is such that its
initial orientation aligns with the inertial coordinate system, and
the camera is always looking towards the negative z direction of
the body-fixed right-handed coordinate system.

e range of the target to camera and range rate.

-seglnfo seglnfoFile Required argument. seglnfoFile is the description file
for the segmented image database of the whole time history. The file

is composed of the data records of the following form:

time=2 image=sl.seg0020
seg_ulx=90 seg_uly=316 seg_width=256 seg_height=256
tcx=221.809 tcy=444.128 tvx=46.5792 tvy=5.43854
out_ulx=-1 out_uly=-1 out_width=256 out_height=256
8ize=46.8957 scale=2 mag=5.45893 proj=2
roll=0 pitch=0 yaw=1.5609
estroll=0 estpitch=0 estyaw=1.5708

-t0 start-time Required argument. start-time specifies the time at which

the tracking system should start to run. This floating number has the

CHAPTER 4. USER’S GUIDE 27

unit of seconds.

Example: -t0 10

-te end-time Required argument. end-time specifies the time at which the
tracking system should terminate. This floating number has the unit
of seconds. By specifying start-time and end-time, one can ask system
to run over the selected segment of the trajectory of interest instead of
the whole time history.

Example: -te 50

-oimgInfo out-imglnfoFile Required argument. out-imglnfoFile is the se-
lected segment of the description file for the world-view image database.
It has the same format as the input file imgInfoFile.

-osegInfo out-seginfoFile Required argument. out-seginfoFile is the se-
lected segment of the description file for the segmented image database.
It has the same format as the input file seglnfoFile.

-traj out-ezact-traj Required argument. out-ezact-traj is the file contain-
ing the selected segment of ezact trajectory. This file has the following

format:
t z(t) y(t) =z(t)

where ¢ is the current time, z(t), y(t) and z(¢) the ezact target position
coordinates at ¢. These floating numbers ¢, z(t), y(t) and z(t) have the
following units, respectively:

seconds meters meters meters

-spec out-spec Required argument. out-spec is the output spec file contain-

ing information corresponding to the starting and terminating points.

CHAPTER 4. USER’S GUIDE 28

Each of the two data records in the file out-spec consists of the fol-
lowing items in order: A sequence number, a data record from the
image description file at start-time(or end-time), a data record from
the description file for the segmented image database at start-time(or

end-time).

-help Optional argument. When this argument is specified, dataControl

prints out a brief help message and exits gracefully.

4.2.3 1I/0 File Specification

-imgInfo imgInfoFile

The input image the description file imglnfoFile consists of the data records,

with each data record containing items (see Section 5.5.3):

time at which the image is to be generated. This is identified by a “

keyword=value™ pair, with the keyword being time.

the image identifier which maps to the corresponding image file. This is

identified by a “ keyword=value” pair, with the keyword being image.

the image width in number of pixels. This is identified by a “ key-

word=value” pair, with the keyword being width.

the image height in number of pixels. This is identified by a “ key-
word=value” pair, with the keyword being height.

the tank’s state at that instant which includes

tz,y;z,.r';y',z}RSTRST

the camera’s state which includes

CHAPTER 4. USER’S GUIDE 29

Tel YeI 2l 37::1' y;I 2;1 Rc Sc Tc Rc Sc Tc
fov fov hither yon yon

where z1, Yer, Zel, Tel, YeI, Zer denote the position and velocity compo-
nents of the camera at the instant in global inertial coordinate system.
R., S., T., B., S., T refer to the yaw, pitch , roll angles and their rates.
fov and fov refer to the field of view(in degrees) and its time rate of
- change(in degrees per second), respectively; hither, hither denote the
position of the front clipping plane and its rate in the camera coordi-
nate system; yon, yon position of the back clipping plane and its rate in
the camera coordinate system. The camera coordinate system is such
that its initial orientation aligns with the inertial coordinate system,
and the camera is always looking towards the negative z direction of

the body-fixed right-handed coordinate system.
o range of the target to camera and range rate.

The data records are separated by one or more white space charac-
ters(blanks, tabs, newlines). The data items in each data record are also
separated by one or more white space characters.

A Typical abridged imgInfoFile having two data records may look as

follows:

time=2.000000 image=sl.img0020 width=900 height=900
2000.100000 -79.946000 -1.400000 0.109320 11.046000 0.000000
1.560900 0.000000 0.000000 0.005000 0.000000 0.000000
0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000
0.000000 ~0.002778 0.000000 0.000000 0.000000 0.000000
9.000000 0.000000 -1.000000 0.000000 -2500.000000 0.000000
2001.703368 -0.331933

CHAPTER 4. USER’S GUIDE 30

time=2.100000 image=s1.img0021 width=900 height=900
2000.200000 -78.837000 -1.400000 0.109860 11.141000 0.000000
1.560900 0.000000 0.000000 0.035000 0.000000 0.000000
0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000
0.000000 -0.002778 0.000000 0.000000 0.000000 0.000000

9.000000 0.000000 ~1.000000 0.000000 -2500.000000 0.000000
2001.759304 -0.329001

-segInfo seginfoFile !

The input file seg/nfoFile contains a brief description of the parameters ac-
tive at the time each image is segmented. Each segmented image has an
associated record of the form:

time=0.5 image=si.seg0005

seg_ulx=40 seg_uly=40 seg_width=256 seg_height=256
tcx=130.0 tcy=130.0 tvx=60.0 tvy=80.0

out_ulx=4 out_uly=4 out_width=256 out_height=256
8ize=100 scale=2.0 mag=2.56 proj=5

roll=0 pitch=0 yaw=1.5609

estroll=0 estpitch=0 estyaw=1.5708

The information in this file pertains strictly to the segmented image. Infor-
mation regarding the pre-segmentation image, for example its dimensions, is
not recorded in this file; instead it is in “sl.info”.

Each segmented image has a sequence number formed from the last 4
characters of its name; time is this sequence number divided by 10.

The entire input image is not segmented; only pixels falling in a segmen-
tation window, measuring seg_height by seg_width, centered at the last
estimated position of the target are considered. The upper left hand corner

By Craig Codrington

CHAPTER 4. USER’S GUIDE 31

of this window is situated at pixel coordinates (seg_ulx,seg-uly) of the in-
put image. The new target position, relative to the input image, is taken to
be the centroid (tcx,tcy) of the pixels classified as target, and an indication
of its size is given by the variances tvx and tvy of these pixels in the x and
y directions, respectively. In fact,

size = \/tvx? + tvy? (4.1)

The segmentation is mapped to an output window, measuring out_height
by out_width, and centered at the new position of the target in the seg-
mentation window. The upper left hand corner of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>